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ABSTRACT 

For any graph, there is a largest integer k such that given any partition of the vertex 
set with at  most k elements in each class of the partition, there is transversal of the 
partition that is a dominating set in the graph. Some basic results about this parameter, 
the partition domination number, are obtained. In particular, it is shown that its value 
is 2 for the two-dimensional infinite grid, and that determining whether a given vertex 
partition admits a dominating transversal is NP-complete, even for a graph which is a 
simple path. The existence of various dominating transversals in certain partitions in 
regular graphs is studied as well. 0 1996 John Wiley & Sons, Inc. 
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1. INTRODUCTION 

In this paper we explore a graph-theoretic parameter defined by a statement of the form: "For 
every partition of the vertex set satisfying P there is a transversal satisfying Q." 

Here, and in what follows, a transversal of a partition is a set of distinct representatives of the 
classes of the partition. One example of such a parameter is the strong partition independence 
or strung chromatic number of a graph G = ( V , E ) ,  p i*(G),  studied in [ l ] ,  121, [9], and [lo]. 
This is defined to be the least positive integer k such that every partition of V together with an 
arbitrary number of additional isolated vertices having exactly k vertices in each class admits 
a partition whose classes are transversals of the original partition as well as independent sets 
in G .  Bounds on this and related parameters for regular graphs are developed by probabilistic 
methods in [9] and [2]. A conjecture of Du, Hsu, and Hwang 171, modified by Erdos, has 
recently been settled in the affirmative in [ 101, where the authors apply the main result of [4] 
to deduce that the strong chromatic number of the infinite path is 3. Determining the value of 
this parameter can be difficult even for relatively simple graphs. 

In this paper we study the following analogously defined parameter. 

Definition. The partition domination number p d ( G )  of a graph G = ( V , E )  is the largest 
positive integer k such that every partition of V having at most k vertices in each class admits 
a transversal that is a dominating set in G. 

In [ 91 it is observed that the partition domination number of the infinite pattl (or 1 -dimensional 
grid) is 2. In this paper we obtain a number of basic results concerning dominating transversals 
of vertex partitions in graphs. One of our results shows that the partition domination number of 
the infinite 2-dimensional grid is also 2. It is worth noting that the strong partition independence 
number of the 2-dimensional grid is unknown but is between 5 and 9. The lower bound is 
deduced from the easy inequality pi*(G) 2 A(G)  + 1 mentioned in 121, where A ( G )  is the 
maximum degree of G ,  and the upper bound can be seen by applying the easily established 
inequality pi*(G X H )  5 pi"(G)pi*(H) to the case where G and H are both infinite paths. 
Here the product G X H is the graph whose vertices are all pairs of vertices ( u , u ) ,  where u 
is a vertex of G and u is a vertex of H ,  in which two pairs are adjacent if and only if they 
are equal in one coordinate and adjacent in the other. Thus when G and H are infinite paths, 
their product is the infinite 2-dimensional grid. 

We feel that these parameters deserve to be studied, having an inviting Ramsey theoretic 
flavor. Possible applications of the partition independence parameter to fault-tolerant data 
storage are speculated in [9]. In a similar spirit we describe a fanciful illustration of partition 
domination in Section 2. 

The rest of the paper is organized as follows. In Section 2 we discuss notation and definitions 
and present some simple observations. In Section 3 we prove that the partition domination 
number of the 2-dimensional grid is 2. In Section 4 we employ the LovaSz Local Lemma 
to prove a bound on the degree of regular graphs which ensures the existence of various 
dominating transversals of vertex partitions that have classes of uniform siz,e. In Section 5 we 
consider the complexity of computing a dominating transversal and show that the corresponding 
decision problem is NP-complete, even for graphs which are simply paths. In Section 6 we 
conclude with a brief discussion of open problems. 
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2. PRELIMINARIES 

All graphs G = ( V ,  E )  in this paper are simple, without loops or multiple edges. An 
independent set of vertices in a graph is a set V’ C V such that for all x, y E V’, xy @ E .  A 
set of vertices V’ C V is a dominating set if for every vertex u E V there is a vertex w E V’ 
such that u = w or uw E E .  The domination number y ( G )  of a graph G is the minimum 
cardinality of a dominating set in G. 

By the d-dimensional grid, denoted L d ,  we refer to the graph having as vertices the integer 
lattice points in the d-dimensional Euclidean space, with two vertices adjacent if and only if 
they are at distance 1. By Lf we denote the (finite) d-dimensional grid for which the lattice 
points have coordinates in the range 1 , .  . . . n. Other standard graph-theoretic terminology may 
be found in [ 5 ] .  

Definition. A partition n- of a set X is k-thick if for each class [x] of n-, I[x]l 2 k .  Similarly 
a partition is k-thin (k-exact) if each class of the partition has at most (exactly, respectively) 
k elements. 

For convenience, we may refer to a partition of the vertex set of a graph as a coloring, and 
refer to the classes of the partition as color classes. 

Definition. 
n- is a transversal of n-’ (and vice versa). 

Definition. The partition domination number pd(G) of a graph G = ( V ,  E )  is the greatest 
integer k such that for every k-thin partition n- of V there is a transversal T of n- that is a 
dominating set of vertices in G. 

A partition n- of a set X is orthogonal to a partition n-’ of X if each class of 

The following is a fanciful illustration of how an application of this parameter might arise 
in a certain distributed or parallel model of computation. 

The Sound of the Perfect Chime 

A certain society (modeled by a graph G) wishes that each member should be able to hear 
the Sound of the Perfect Chime. The Sound of the Perfect Chime is produced by an elaborate 
instrument that can be constructed only with some difficulty. The effort of constructing one 
can be shared, however. If a group of people work together to construct a chime to produce 
the Perfect Sound, then they will select a Keeper of the Chime who will have the instrument 
at her house (i.e., vertex). 

Cooperation is made difficult by the fact that many individuals in the society find it 
impossible to work together for complicated and inscrutable reasons. Yet cooperative groups 
for building the chimes do emerge. 

Once constructed (and located at a particular vertex u ) ,  the Sound of the Chime can be 
heard at u and at all its neighbors. 

If we know that pd(G) is k, then we know that if the society forms into cooperative groups 
to build the instruments, with everyone belonging to one of these groups, and if no group has 
more than k members, then Keepers of the Chimes can be selected so that everyone will be 
able to hear the Sound of the Perfect Chime. 

We next prove a simple inequality relating to the partition domination number to a graph 
to its domination number. 
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Lemma 1. Let G be a graph on n vertices, and let y(G)  be the domination number of G. 
If y(G) 2 2, then p d ( G )  < n / [y (G)  - 11. 

Let y = y(G) 2 2 and let T be any partition of V ( G )  that has y - 2 classes of 
size [ n / ( y  - 1)1 each and one class of the remaining vertices (at most n / ( y  - 1) remaining). 
If k 2 n / ( y  - 1), then T is a k-thin partition of C with only y - 1 classes. Therefore T 

has no dominating transversal. 

Corollary 1. If y ( G )  2 2, then p d ( C )  < [n(A + l)]/[n - A - 11, where A is the max- 
imum degree of G. 

Proof. 

Proof. Apply Lemma 1 with the simple bound y(G)  2 n/(A + 1). I 
Corollary 2. If n 2 (A + I ) ( A  + 2), then p d ( G )  5 A + 1. 

3. THE TWO-DIMENSIONAL GRID 

The goal of this section is to determine p d ( L 2 ) .  We initially consider the finite 2-dimensional 
square grids L t  of order n2. By Corollary 2, p d ( L i )  9 2d + 1 (except for a few small values 
of n).  

Consider the following partial 3-thin partition of L i  where the elements of each class are 
represented by indexed letters and where the classes containing the vertices labeled A, B ,  C ,  D 
are not determined. 

We call such a configuration a j-shape (A, B ,  C ,  D ,  f ,  g ,  . . . , I )  (since it looks like a slanted 
j when 12 is removed). 

Lemma 2. Let T be a transversal of any completion to a 3-thin partition of the vertex set 
of L i ,  of a 3-thin partition of a j-shape (A, B ,  C ,  D ,  f ,  g , .  . . , I )  for n 2 8. If T dominates L;, 
then at least one of the vertices labeled A, B ,  C ,  D is in T .  

Suppose, to the contrary, that A, B ,  C ,  and D are not in T .  Since T dominates 
L i ,  f l  E T .  Thus f 2  and f 3  are not in T ( T  is a transversal) and since C and D are not in 
T ,  g1 E T .  This forces hl to be in T ,  which in turn forces il to be in T ,  and so on, so that 
j l ,  kl, and 11 are all in T .  Thus f 3 ,  g3, i3, and k3 are not in T .  But then 12 is not dominated 
by T ,  a contradiction. 

Theorem 1. 

Proof. 

Proof. 

For all n 2 130, p d ( L i )  = 2 .  

To prove that p d ( L ; )  5 2, a partial 3-thin partition is constructed so that any 
completion to a 3-thin partition of the entire graph fails to have a dominating transversal. 
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Overlap a j-shape (a2, u3, b2, b 3 , f ' ,  g ' ,  . . . , l ' ) ,  denoted J I  with another j-shape denoted 
J2 ,  j-shape (a3, a2, c2, c3, f ', g 2 , .  . . , Z2), that is rotated by 180 degrees, so that they intersect 
in the following way: 

(Note that f is a class of the partition containing the vertices labeled f i ,  f:, fi, and it is 
different from the class f2 . )  Overlap another j-shape (d2, bl ,  c1 ,d3 , f3 ,g3 , .  . . , 1 3 ) ,  53, with a 
j-shape ( d l ,  bl, e2, e3, f 4 ,  g4, . . . , 14), J4 that is rotated by 180 degrees, and with an additional 
j-shape ( C I ,  61, d l ,  el, f ', g', . . . , 1 5 )  which is rotated by 270 degrees, so that they intersect in 
the following way: 

d2 

dl 
f :  

f 2 "  
g: 

Let this partial 3-thin partition be called J " .  Complete J" to a 3-thin partition that uses the 
label al on a vertex somewhere else in the graph. Suppose T is a dominating transversal of 
the partition and suppose a1 E T .  

Since a2 and a3 are not in T ,  using J1 and Lemma 2 we have that one of b2 or b3 is in 
T ,  and hence bl (i? T .  Similarly, using J2 ,  c1 CZ T .  By Lemma 2 again using J3, one of d2 or 
d3 is in T since bl and C I  are not in T .  Hence dl (i? T ,  and by Lemma 2 once more using 
J4 ,  el @ T .  But this is a contradiction, since by Lemma 2 using J5, one of b l ,  c1, d l ,  or el 
is in T .  Therefore, a1 @ T .  

Finally, partition 5 disjoint subgraphs of L: in the same manner as J" but with each copy 
of the partial partition being distinct so as to obtain a partial 3-thin partition. Let a ; ,  a:, . . . , a l  
be the unused labels corresponding to ul .  Somewhere else in the graph label the closed 
neighborhood of a vertex in the following way: 

5 

Complete this partial 3-thin partition to a 3-thin partition for the entire graph. If T is any 
dominating transversal of the partition, then a;  is not in T for i = 1, 2, .  . . ,5 ,  by the above 
argument. Thus a: is not dominated by T and hence no such transversal exists. Therefore 
p d ( L i )  9 2 .  

To see that p d ( L i )  2 2, let n- be a 2-thin partition of L i  and let Ql ,  Q2,. . . , Q, be vertex 
disjoint paths of length 0 or 1 of L: such that every vertex of Li is on one of the paths and at 
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most one Qi has length 0. Define a bipartite graph H = (X, n-), where X = {Ql, Qz, . . . , Q,} 
and for all [x] E n- and 1 I i I t ,  Q i [ x ]  E E ( H )  if and only if Q, n [x] # 0. This 
graph has a matching M which saturates X and hence we can select vertices ui such that 
u; E Q; n [xi], where Q; n [ x i ]  E M .  Since the set T = { u l ,  q,. . . , ut} dominates Li  and 
M is a matching, we may add any other vertices of Li  to T so that it becomes a transversal 
of n-. This transversal will also dominate L i  and so p d ( L i )  2 2. 

Corollary 3. p d ( ~ ~ )  = 2. 

I 
Since the same argument shows that p d ( L 2 )  2 2 we obtain the following. 

4. BOUNDS FOR REGULAR GRAPHS 

In this section we study bounds on the degree of regular graphs that insure the existence 
of dominating transversals for certain kinds of partitions. The following has been previously 
established. 

Theorem 2. 191. If G is a &regular graph with 6 2 18 k log2 k ,  k 2 2, then p d ( G )  2 k .  I 

One might wonder whether the regularity condition in the above theorem might be replaced 
by a minimum degree requirement. The Lemma below shows that any generalization of 
Theorem 2 in this direction fails. 

Lemma 3. 

Proof. 

For all 6, there exists a graph G with minimum degree 6 such that p d ( G )  = 1 .  

Let 6 be given. The graph G that we describe is bipartite on the classes of vertices 
VO,  V I ,  with lVol = 2'+' and IVI I = 26. We also describe a 2-exact partition n- of V ( G )  that 
has no dominating transversal. 

Let the vertices of Vi be partitioned into 6 pairs. Each pair is a class of n-. Let S be the 
set of all 2' distinct subsets of V I  that contain exactly one vertex from each of the 6 pairs. 
For each X E S ,  there are two vertices xo and XI of Vo which are adjacent to all members 
of X (and only to them). 

Each such pair XO, XI forms a class of n-. Thus n- is 2-exact. Let T be any transversal of 
n-. Then for some Y E S ,  Y n T = 0. Let yo ,  y~ be the two vertices in VO whose set of 
neighbors is Y .  Since either yo or y1 is not in T ,  and since both of them have no neighbor in 
T ,  we conclude that T is not a dominating set in G.  

Our next result gives a generalization of Theorem 2 that parallels similar results established 
in [9] and [2] for independent transversals. 

Theorem 3. Let G = ( V ,  E )  be a finite, 8-regular graph and let n- be a k-exact partition 
of v.  If 

I 

6 2 klog,(S2k2) + k 

then there exists a partition n-' of V orthogonal to n- with each class of T' a dominating 
set in G. Note that the last inequality holds for 6 2 (4 + o ( l ) ) k  log, k ,  where the o( l )  term 
tends to zero as k tends to infinity. 

The proof of the theorem is probabilistic and is based on the L O V ~ S Z  Local Lemma (cf., e.g., 
131, [ I  I]). Let A ! ,  . . . ,A,, be events in a probability space. A graph H on the vertices ( 1 , .  . . , n }  
(the indices for the A , )  is called a dependency graph for A { ,  . . . , A ,  if for all i the event A, 
is mutually independent of all A, with ( i , j }  @ H .  
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The Local Lemma. 
a vertex in H. If e(d + 1)p 5 1 then 

Assume that for all i, Pr(A,) 5 p and let d be the maximum degree of 

Proof of Theorem 3. For each class [x] of n-, randomly and independently, choose a 
permutation of the k vertices of [x] according to a uniform distribution. For each vertex u of 
G, let E ,  denote the event that for some i, I 5 i 5 k ,  no neighbor u of u is the ith element 
of the permutation chosen for [ u ] .  Note that if the permutations can be chosen so that no 
event E ,  holds, then the sets D ,  consisting of the ith vertex in each class of T constitute an 
orthogonal partition n-’ with the required properties. 

We first show that for each u E V :  

To see this, fix an i E ( 1 , .  . . , k } ,  and let us estimate the probability that u will have no 
neighbor chosen as the ith element in its class. If a class contains j neighbors of u ,  the 
probability that the ith element in the randomly chosen permutation of the members of this 
class is not a neighbor of u is 1 ~ j / k  5 ( 1  - I/k)i .  Therefore, if 71 partitions the neighbors 
of u into nonempty classes of sizes j l ,  . . . , J x  it follows that the probability that no neighbor 
will be chosen as the ith element in its class is at most 

As there are k possible values of i ,  the desired upper bound for Pr(E,) follows. 
We now define a dependency graph H for the events E ,  as follows. The set of vertices of 

H is the set of all vertices u of G.  Two vertices 1.1: and u are adjacent in H if and only if 
there is a class of the partition n- that contains a neighbor of w and a neighbor of u .  It is not 
difficult to check that this is indeed a dependency graph for the events E,. In fact, if u is a 
vertex, even if we know the chosen permutations for all the classes of the partition n- besides 
those that contain neighbors of u ,  the probability of E ,  remains unchanged, and it is easy to 
see that any assumption on the events Ell. for vertices w which are not H-neighbors of u is 
determined by these permutations. It thus follows that the maximum degree of a vertex in H 
is less than 6’k. Therefore, by the Local Lemma, if 

then with positive probability no event E ,  holds. It is therefore enough to assume that 

implying the assertion of the theorem. 
The 0 ( k  log k )  estimate in Theorem 3 is tight, up to a constant factor. This is because there 

are d-regular graphs on n vertices for which the usual domination number is O((n  log d) /d ) .  
There are several known examples of such graphs. The best known is, perhaps, the Paley 

I 
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graphs (they give the existence of the required graphs for an infinite dense set of values of 
d from which it is easy to deduce the existence for every d) .  See, for example [6, p. 3191. 
Random d-regular graphs also have the required property, as mentioned, e.g., in [3, p. 6-71. 
Applying Lemma 1 to these graphs, it follows that there are d-regular graphs G for which 
p d ( G )  5 O(d/logd) and hence Theorem 3 (as well as Theorem 2) is tight, up to a constant 
factor. 

5. COMPLEXITY ISSUES 

In this section we consider the computational complexity of deciding whether a vertex partition 
of a graph admits a dominating transversal. Not surprisingly, the problem is NP-complete. The 
interesting thing is that the problem is NP-complete even for graphs which are simply paths. 

Dominating Transversal 
Instance: A vertex coloring y of a graph G = ( V , E ) .  
Question: Is there a transversal T of y that is a dominating set of vertices in G? 

Theorem 4. 
which G is a path. 

Dominating Transversal is NP-complete, even when restricted to inputs for 

Proof. The problem is clearly in NP, since given a transversal T of a coloring y we can 
easily check in polynomial time whether T is a dominating set of vertices. To show that the 
problem is NP-hard we reduce from 3SAT. 

Given a Boolean expression E ,  we will produce a coloring Y E  of a path P with the property 
that Y E  has a dominating transversal if and only if E is satisfiable, and Y E  will be produced 
in time polynomial in IEl. 

It is convenient to introduce the following notation. By a coloring p of P,, the path with 
n vertices, we mean a function p : [ n ]  - C, where [ i ]  = {1,2,. . . , i }  and C Z.  We regard 
the vertex set of P, to be the integers [ n ] .  To avoid confusion, integers representing colors 
are printed in bold. We may also write p = (XI, x2, . . . , x,) to indicate that p ( i )  = x i ,  and we 
term this the sequence representation of p .  Given p1 and p2 ,  two distinct colorings of paths, 
p~ = ( X I , .  . . ,x , )  and p2 = ( y l , .  . . ,y,), we define p~ * p2 to be the coloring of P,,, with 
the sequence representation (XI, x2,. . . , Xn, Y I ,  y2, . . . , y m ) .  

The coloring Y E  is defined as a product, in terms of the above operation, of various 
component colorings: 

where a g ,  m u ,  and pc are described in the following paragraphs. One of the components is 
designed to force a particular vertex of a particular color (1, in what follows) to belong to 
every dominating transversal of Y E .  We next describe this component. 

Let a0 = (I, 3,2,2,1,2,2,4,1).  According to our notational conventions, (YO is a coloring of 
P g  and the vertex set of P g  is the set of integers { 1,2, .  . . ,9}. Thus ao(4) = 2 and ( ~ ~ ( 5 )  = 1. 
We argue that 5 E T for any dominating transversal T of a0 (and therefore of the coloring 
Y E  which we will construct, that has a0 as a factor). If 5 @ T ,  then either 4 E T or 6 E T .  
If 4 E T ,  then 6 @ T and 7 G T ,  and T fails to be a dominating set since the vertex 6 has 
no neighbor in T .  A similar contradiction is reached if we assume 6 E T .  The colors 2, 3, 
and 4 of vertices of (YO will not appear outside of Y E .  Thus, in any dominating transversal T 
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of a0 (and Y E )  we must have 2 E T and 8 E T since the 3 and 4 color classes each contain 
only a single vertex. The purpose of this component is to supply a color (1) so that vertices 
of this color elsewhere in Y E  are forced not to belong to any dominating transversal T .  For 
convenience, we will reuse the color names 2, 3, 4, in describing other components. This 
should cause no confusion. 

Let 6 denote the coloring 6 = (1, i, 1) where i is a color used nowhere else in Y E .  We 
use 6 extensively in constructing the variable and clause components of YE. Our convention 
is that for each occurrence of 6 in our descriptions, there is a unique color used only once 
(on the corresponding interior vertex). Let D denote the set of colors thus reserved by the 
occurrences of 6 in y E .  

For each variable u that occurs in the Boolean expression E we create a component a,. 
Associated with u is set of colors I, = I,’ U 1; with ((1) U D )  f l  I: = 0, ((1) U D )  f l  
I; = 0 and I: f l  I; = 0. If u is a variable of E distinct from u ,  then I, f l  I ,  = 0. 
Furthermore, we distinguish the colors i,’ E I,’ and i; E 1; and establish a bijection between 
I: and I, which we write additively: I, = (-xlx E I:} with i: = 

The functioning of a,  is most easily explained by a small example. Suppose the variable u 
occurs (either negated or unnegated) in five clauses. A suitable a ,  would be described: 

1 ,  . 

a ,  =6 * (-10, -5, -9) * 6 * (-8, -4, -7) * 6 * (-6, -3, -5)* 

6 * (-4,-2, -3) * 6 * (-2,2) * 6 * (3,2,4) * 6 * (5,3,6)* 

6 * (7,4,8) * 6 * (9,5,10) * 6 

Note that in the middle of a ,  is the sequence (-2,2). This is the key to the components’ 
functioning. Here we have i: = 2, i; = -2, and I: = (2,3,. . . , lo}. 

In the argument we assume that a0 and a,  are factors of Y E .  In particular, no vertex colored 
1 in a ,  can belong to a dominating transversal T (because a representative of the color class 1 
is forced to be chosen in a& and hence every internal vertex of an occurrence of 6 in a ,  must 
be in T .  Our example, is by our notational convention, a coloring of P56, with a,(28) = -2 
and a ,  (29) = 2. In a dominating transversal T ,  necessarily either 28 E T or 29 E T (or both). 
This necessity encodes the “decision” concerning the truth-value of the variable u .  

If 28 E T ,  then 23 @ T (the vertex 23 is also colored -2), and therefore 22 E T and 
24 E T .  By further “cascading” we may conclude that representatives of the color classes 
-2, -3, .  . . , -10 must all be chosen from the vertices of the component a,. If 29 E T ,  then 
the situation is quite symmetric. The pairs of colors +lo, +9, ?8, 57,  and 2 6  (corresponding 
to the five occurrences of literals of u in E presumed for this example) communicate the results 
of the “decision” to the clause components (described below) in the following way: if 28 E T 
(symmetrically, if 29 E T )  then T can dominate a ,  with 29 @ T and, by the appropriate 
choices, with no representatives of the color classes 6 ,7 , .  . . ,10 chosen in a,. Thus, the 
representatives of these classes are free to be chosen elsewhere (in particular, they may be 
chosen from the vertices of the clause components). 

The above small example generalizes in a straightforward manner to a construction 
accommodating any number of clauses in which literals of the variable u might occur. Indeed, 
the same construction allows us to supply “multiple copies” of any variable component’s 
“decision”. In the clause components, we actually employ two copies of each “decision”. 

For each clause component we reserve two colors j and j ’  that arc used nowhere else. 
The variable components serve to supply colors to the clause components. According to the 
“decision” in the variable component, representatives of the supplied colors may be forced to 
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be chosen in the variable component (with the consequence that vertices of these colors in 
the clause components cannot belong to T )  or representatives may be free to be chosen (in 
a transversal that dominates the variable components) from among the vertices of the clause 
components. 

For an example, suppose the clause C of E is (written additively), C = (x + 7 + z ) .  
Abusing our notation, suppose that the variable component a, supplies the colors x and x’, 
suppose the variable component a, supplies the colors - y  and -y’ and suppose the variable 
component az supplies the colors z and z’. By “supplying” colors we mean that, for example, 
{x,x’} I: and that in the construction of the variable component ax, the colors x and x’ 
are “specially created’ for the clause C. Then the clause component pc of y E  is described 
by the sequence representation 

pc = 6 * ( , j , x ,  - y , z , x ’ ,  -y’ ,z’ , j ’ )  * 6. 

If T is a transversal that dominates the variable components, then T dominates the vertices of 
pc if and only if the representatives of the colors x and x’, or of - y  and -y’, or of z and 
z’ are chosen from the vertices of Pc.  This will be possible if at least one of the “decisions” 
in the variable components is favorable. 

By the definition of Y E  in ( I ) ,  if E is satisfiable, then we can produce a dominating transversal 
T of YE, and if E is unsatisfiable, then for every possible set of “decisions” in the variable 
components there will be some clause C (such as, for illustration, the example described above) 
for which representatives of the supplied colors ({x, x’, - y ,  -y’,  z ,  z’} in the example) are all 
forced to be chosen from among the vertices of the variable components, and thus some of 
the internal vertices of PC fail to be dominated. I 

6. CONCLUSIONS AND OPEN PROBLEMS 

We have shown that p d ( L ’ )  = p d ( L 2 )  = 2. For d 2 3 the exact value of p d ( L d )  is not 
known, although it follows from Corollary 2 and Theorem 2 (and its proof together with as 
standard compactness argument) that 

for all d .  It would be interesting to determine precisely the value of p d ( L d )  for additional 
values of d.  More generally, it may be interesting to investigate the relationship between the 
partition domination number of two graphs and their product. It is not too difficult to prove 
that p d ( G  X H )  < ( p d ( G )  + 1) ( 6 ( H )  + l),  where 6 ( H )  is the minimum degree of H ,  and 
there may be deeper similar relations. 

The choice number of a graph, introduced in 1121 and in [S] and studied in numerous 
subsequent papers extends the notion of the chromatic number of a graph. There is a natural 
way to define the “choice analog” of the strong chromatic number mentioned in the introduction, 
and the study of this parameter may be interesting. 
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